Medical Implications of the Male Biological Clock

Benjamin H. Lewis; Marianne Legato; Harry Fisch

http://jama.ama-assn.org/cgi/content/full/296/19/2369

Correction
Contact me if this article is corrected.

Citations
This article has been cited 7 times.
Contact me when this article is cited.

Topic collections
Aging/ Geriatrics; Men's Health; Men's Sexual Function
Contact me when new articles are published in these topic areas.

Subscribe
http://jama.com/subscribe

Permissions
permissions@ama-assn.org
http://pubs.ama-assn.org/misc/permissions.dtl

Email Alerts
http://jamaarchives.com/alerts

Reprints/E-prints
reprints@ama-assn.org
Medical Implications of the Male Biological Clock

Benjamin H. Lewis, MD
Marianne Legato, MD
Harry Fisch, MD

The phrase “biological clock” is most commonly used by physicians to refer to the declining fertility, increasing risk for fetal birth defects, and altered hormone levels experienced by women as they age. Abundant scientific evidence suggests that men also may have a biological clock. Men and their physicians must therefore understand the effects of the male biological clock on sexual and reproductive health, as well as its potential contributions to major medical consequences such as diabetes, cardiovascular disease, and the metabolic syndrome.

Aging, Male Infertility, and Birth Defects in Offspring

Male fertility clearly declines with age. Studies demonstrate that men older than 35 years are twice as likely to be infertile (defined as the inability to initiate a pregnancy within 12 months) as men younger than 25 years. Among couples undergoing fertility treatments with intrauterine insemination, the amount of time necessary to achieve a pregnancy increases significantly with the age of the male member of the couple. Furthermore, after controlling for maternal age, couples in which men are older than 35 years have a 50% lower pregnancy rate compared with couples in which men are 30 years and younger.

Although the association between advancing maternal age and an increased incidence of birth defects has long been recognized, paternal age has been considered to be less relevant. Recent data suggest that paternal age does matter and the genetic quality of sperm does decline with age. For example, Reichenberg et al recently reported a significant association between advancing paternal age and the risk of autism spectrum disorder (ASD) in their children. Offspring of men 40 years or older were 5.75 times more likely to have ASD compared with offspring of men younger than 30 years, after controlling for year of birth, socioeconomic status, and maternal age. Advancing maternal age showed no association with ASD after adjusting for paternal age.

In a study reported by Malaspina et al, older men were at higher risk of fathering a child with schizophrenia. Men older than 40 years were more than twice as likely to have a child with schizophrenia as men in their 20s. A similar influence of paternal age on the risk of having a child with Down syndrome also has been reported, with paternal age a factor in half the cases of Down syndrome when maternal age exceeded 35 years. Other investigators found that the rate of miscarriages increased with advancing paternal age when maternal age was older than 35 years. Thus, there is convincing evidence for an effect of paternal age alone as well as a combined effect of advancing paternal and maternal age on increased risks of genetic abnormalities leading to miscarriage or disease in their children.

Women should thus no longer be viewed as solely responsible for age-related fertility and genetic problems. Infertility is not just a woman’s problem and awareness of the effects of the male biological clock will allow couples and their physicians to proceed with proper testing, diagnosis, and (if needed) treatment of the male partner. Still, knowledge of the contributions of male-factor infertility are just emerging and much more research is needed to fully characterize the risks associated with the metabolic, genetic, and functional changes brought on by the male biological clock. These changes include, but are not limited to, factors such as declining sperm counts and motility, sperm dysmorphology, erectile dysfunction, age-related hypogonadism, and genetic anomalies in sperm or cofactors found in semen.

Declining Testosterone Levels

Similar to women, aging in men also is associated with declines in sex hormone levels. The decrease in hormone levels in men is not as steep or as sudden as that associated with hormone declines during menopause in women, but its effects can be significant. The approximate 1% per year decline in testosterone levels after age 30 years has been termed andropause, although this is a somewhat imprecise term because testosterone levels do not actually “pause” in the same way that estrogen levels do. A more technically accurate (though clumsy) description might be “symptomatic hypogonadism in the aging male.” Hypogonadism is not defined by a specific level of serum androgens because testo-
Erectile dysfunction is associated with well-established negative psychological effects, primarily depression and anxiety.18 Separate findings have established a 16% to 18% prevalence of major depression in CVD patients.19,20 Patients with ED are more likely to become depressed than those without ED and therefore may have an increased risk of developing CVD.

Several recent studies have described the comorbidity of ED and BPH, which correlate with diminished quality of life.21 Erectile dysfunction, CVD, depression, and BPH are all common conditions among older men and because these conditions appear to be strongly correlated, a multidisciplinary approach to future research and clinical practice is warranted.

Testosterone Replacement Therapy

Growing recognition of the morbidity and mortality risks associated with low testosterone levels has spawned an increased use of various forms of testosterone replacement therapy. Current treatments for hypogonadism, such as exogenous testosterone replacement and stimulation of endogenous testosterone production, are gaining in popularity. Sales of prescription testosterone products in the United States have increased significantly in recent years. In 2005, according to IMS Health Inc, a total of 2.3 million prescriptions for testosterone products were written in the United States. This represents a 50% increase from 2001 and a 210% increase from 1999.22 This enormous increase is not without risks. Indiscriminate use of testosterone supplements can increase the risks of prostate hyperplasia (and possibly cancer), coagulation disorders (resulting in cerebral vascular injury), dyslipidemia, and infertility.23 Simply replacing (or boosting) testosterone is an inadequate and ineffective approach to treating chronic progressive conditions with multiple causal factors (such as smoking, unhealthy diet, lack of exercise, and genetic predispositions). On the other hand, a rigorous study reported by Marks et al23 suggests that the risks to men undergoing controlled testosterone replacement therapy for laboratory-confirmed hypogonadism may be less than previously thought.

The increase in testosterone replacement therapy seen in the United States may be because the problem of androgen deficiency is being overmedicalized and testosterone therapies are being overprescribed. Physicians must acknowledge the effects of hypogonadism and appropriately treat documented cases of endocrine dysfunction. At the same time, it is important to avoid prescribing hormone therapy merely for physical enhancement (such as for boosting muscle mass or energy in otherwise healthy men). Currently, testosterone replacement products are approved by the US Food and Drug Administration for “conditions associated with a deficiency or absence of endogenous testosterone.”

Conclusions

A number of important clinical consequences occur as the male biological clock winds down. An improved understanding of the associated cellular and biochemical mecha-
nisms of gonadal aging is needed so that safe and effective ways to delay this process or in effect, rewind the clock might be possible. A better understanding of the male biological clock may reduce adverse outcomes in offspring of older fathers and may help facilitate progress to reduce the risks of metabolic syndrome, BPH, diabetes, depression, and CVD.

Financial Disclosures: None reported.

REFERENCES

PSA Testing
Public Policy or Private Predisposition?

Peter C. Albertsen, MD, MS

Physicians order prostate-specific antigen (PSA) tests for many reasons: to confirm the presence of suspected cancer, to monitor progression of prostate cancer or the effect of treatment, or to predict the likelihood that prostate cancer will occur in the future (ie, screening). In this issue of JAMA, Walter et al1 document that many clinicians in the Veterans Affairs medical system order PSA tests for elderly male patients. In 2003, 56% of men older than 70 years who had no previous history of prostate cancer, elevated PSA level, or prostate cancer symptoms had a PSA test performed. Among men older than 85 years, 34% of those in good health and 36% in poor health had a PSA test performed. Most guidelines do not recommend PSA testing in elderly men, so why would physicians perform these screening tests? Why does practice not comply with policy?

Five key questions should drive the decision to perform a screening test.2 Is the disease a significant, serious disease? Is the test accurate? Will the test improve the outcome of the disease? Will the test result cause the patient any harm? Is screening likely to do more harm than good? A review of these 5 key questions should help in understanding why PSA testing has been performed so frequently.

Does a PSA test screen for a significant, serious disease? After lung cancer, prostate cancer is the second leading cause of cancer death in men in the United States. While the lifetime risk of a prostate cancer diagnosis is about 16%, the lifetime risk of prostate cancer death is only 3.4%.3 Of the

See also p 2336.